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Stability of vertical natural convection boundary layers: 
expansions at large Prandtl number 

By C. A. HIEBERT AND B. GEBHART 
Department of Thermal Engineering, Cornell University 

(Received 2 September 1970) 

Expansions are obtained for the large Prandtl number structure of the laminar 
natural convection boundary layer, together with its linear stability charac- 
teristics, for the case of a uniform-heat-flux semi-infinite vertical plate. The 
primary source of instability is shown to arise from a temperature-coupling 
effect associated with the inner heated region of the boundary layer. Based upon 
an empirical correlation between the results of linear stability theory and 
experimentally determined r6gimes of the turbulent-transition process, it is 
shown that the flow can be expected to become turbulent before the outer 
vorticity region of the laminar boundary layer is fully established. The results are 
generalized to  the isothermal plate case. 

1. Introduction 
I n  a previous paper (Hieber & Gebhart 1971, hereafter referred to  as (A)), 

numerical results were obtained for the linear stability of the natural convection 
boundary layer for the case of a semi-infinite vertical plate dissipating a uniform 
heat flux into a surrounding unbounded fluid. The amplification or decay of the 
arbitrarily small two-dimensional travelling wave disturbances was taken to  be 
spatial. (As shown by Knowles & Gebhart (1968), a Squires theorem also applies 
to  vertical natural convection boundary layers. It is noted that the theorem is 
not restricted to  temporal, a,s opposed to spatial, amplification provided, in the 
latter instance, one assumes that the direction of maximum growth rate coincides 
with the direction of propagation of the three-dimensional travelling wave.) 
I n  particular, i t  was shown in (A) that, a t  large values of the Prandtl number ((T), 
the stability of the primary flow boundary layer is characterized by two distinct 
modes. One of these, mode I ,  was found to  be related to  the uncoupled (Orr- 
Sommerfeld) problem whereas the other, mode 11, was seen to  apparently arise 
directly from the coupling effect (i.e. the dependence of the disturbance velocity 
upon the disturbance temperature via buoyancy). Notably, it was found that 
mode I1 is much more unstable than mode I and that the non-dimensionalized 
frequencies associated with I1 are much larger than those of I. 

I n  the present paper, the underlying physical effects characterizing modes I 
and I1 are determined in the limit of large (T. This is accomplished by means of 
asymptotic expansions for the primary flow and disturbance field as (T + 00. 
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As in (A), the analysis is for the case of the uniform-heat-flux semi-infinite 
vertical plate. The numerical technique employed is essentially the same as that 
in (A), the results being of comparable accuracy. 

Results are presented in $ 2 for the structure of the primary flow as IJ -+ 03. 

Based upon the results of $ 2, the large Prandtl number numerical results of (A) 
are recast in $ 3  in terms of appropriately scaled (in IJ) co-ordinates. These suggest 
the form of the asymptotic expansions (as IT +- 03) for the disturbance field. Such 
expansions for modes I1 and I are presented in $54 and 5, respectively. Some 
implications and generalizations of these results are then given in the concluding 
section, $6.  

2. The primary flow 

for the primary flow boundary layer are 
Employing the same notation as in (A), we recall that the governing equations 

F"' + 4FF" - 3F'F' + H = 0, 

H " + a ( 4 F H ' - F ' H )  = 0 ,  

where P(7) and H(7)  are the non-dimensionalized stream function and tem- 
perature (7 being the 'similarity' variable, y/6, where 6 = 5x/G* characterizes 
the boundary-layer thickness when a is O(1) and where G*, defined in (A), is 
proportional to the fourth-root of the Grashof number G), subject to the 
boundary conditions 

(3) p'(03) = 0 = H(co) = P(0) = F'(0) = H'(O)+ I. 

In the limit IJ -+ 00, it can be readily verified that there exists an inner region, 
corresponding to 7 = O(a-*), wherein the inertial effect is negligible, and an 
outer region, corresponding to q = O(rAi) ,  wherein the temperature variable H 
is identically zero; in both regions, the vertical component of velocity, P'(q), is 
O(&). Hence, introducing the inner and outer variables, 

5 = a37, 5 IJ-&q, 

appropriate asymptotic expansions in the two regions are 

In  particular, the governing equations for the leading-order terms are 

9'+Sa = 0, sq;+4Pasq;-2F;2u = 0, 

f:+4fu fi- 3f:, f:, = 0,  

Sa(0) = 0 = 9; (0) = 2; (0) + 1 =f;(O3) 

subject to the boundary conditions 
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and the matching conditions 

L q C o )  = 0 = Ha(Co) =fa(0), fA(0) = 9 ; ( C o ) .  (10) 

By employing (7)  together with the first three conditions in (9) and the first two 
in (lo), it is possible to  solve (numerically) for Fa and directly; fa can then be 
determined and the process continued to  obtain%, ,y%, etc. However, onlyresults 
will be presented below since, except for different Prandtl number factors (due to 
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different characteristic quantities), the present problem is completely analogous 
to  that of the isothermal plate which was solved, to first-order, by LeFevre (1956) 
and by Stewartson & Jones (1957) and, to  third-order, by Kuiken (1968). 

The pertinent results with regard to  the drag and heat-transfer coefficients are 

P"(0) N (~-%(0-81185-0.17007(~-~ + 0*14131(~-~  + ...), (11) 

H ( 0 )  N (~-*(1-14744+0*22594(~-*-0-03216~-~+ ...). (12) 

F(co) N ( ~ ~ ( 0 ~ 3 4 2 1 9 + 0 * 0 3 5 5 7 ( ~ - * - 0 * 3 1 6 6 6 ~ - ~ +  ...). (13) 

Concerning the total flow within the boundary layer, we note that 

Numerical results for F' and H are shown graphically in figures 1-3, 

3. Conjectures 
Based upon the results of the preceding section, it seems reasonable to  attribute 

the disparate frequencies associated with modes I and I1 to different wavelengths, 
one being characterized by the thickness of the outer layer ( N  dcS), the other 
by the inner-layer thickness ( N d S ) .  Noting also that, in both cases, the speed 
of propagation of the disturbance wave is proportional to  the primary flow speed 
( - ( T - ~ U ,  where U = ( v / 5 z )  characterizes the speed of the fluid when CT is 
O( 1)) and the non-dimensionalized frequencies associated with mode I are smaller 
than those of mode 11, we conjecture that the characteristic frequencies of modes I 
and I1 are, respectively, ( UjS)  (T-A and ( U / S )  d. 

Determination of the G* regime associated with each mode is less straight- 
forward. From the results in (A), however, one notes that the unstable region of 
mode I (or the associated uncoupled mode) corresponds to  much larger values of 
G" than that of 11. We will assume that modes I and I1 correspond, respectively, 
to  G* = O(&) and to  O(m%); the reason for such limiting behaviours will become 
clear from the analysis in $9 4 and 5 .  

Employing the above results, the large Prandtl number neutral stability curves 
obtained in (A) have been rescaled (in terms of (T) in figures 4-5. The curves in 
figure 4 are for the uncoupled case (associated with mode I), those in 5 for mode 11. 
I n  both cases, the curves appear to  approach a definite limit as (T increases, 
substantiating the dependences conjectured above. 

4. Mode11 
On the basis of 9 3, we introduce the following O( 1) quantities: 

X c-i%G*, Q (T%uS/U, 

(w being the physical frequency of the disturbance) and the following asymptotic 
expansions: 

(14) 

where a =- Sdyldx and c E wS/Ua: are complex, the real part of a being the non- 
dimensional disturbance wave-number and the real part of c being approximately 

01. N (Tf(a, + cr-ktb + . . .), c N CT-$(c, + d c ,  + . . .), 
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equal to the non-dimensionalized wave speed. Hence, appropriate expansions for 
the disturbance field are 
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where 4 and 6 are the non-dimensionalized disturbance stream function and 
temperature defined in (A). The arbitrary scale of the disturbance field has been 
fixed by choosing the velocity components to be O(1). 

- 
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- 

cr-i$-G* 

6.7, 25, 100; O(0) = 0. 
FIG- 5. Nose region of coupled neutral stability curves at u = 2-5, 
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We recall from (A) that  the governing equations for the disturbance field are 

(F’ - c) ($” - $4) - F’”$ = (l/iaG*) ($” - 2aZq5” + a4$ + O’) ,  (16) 

( F ~ - ~ ) o - H ’ $  = ( i / i ag~*)  ( e ” - a 2 e ) ,  ( 17 )  

(18) 

subject to the boundary conditions: 

$(m) = 0 = $’(a) = O(c0) = $(O) = $ ’ ( O )  = O(0) or d’(0). 

By assuming a = O ( d )  and noting that d ldy  = O(CT-i’i) in the outer region, 
it follows directly from (16)-( 18) that  the disturbance field must be identically 
zero in the outer layer. That is, the assumption that the wavelength is of the order 
of the thickness of the inner layer implies that the disturbance field is restricted 
to the inner region. 

Substituting (14)-( 15) into (16)-( 17) results in the following governing equa- 
tions for the first two terms in (15): 

2( cp,) = (Dz - 2%; cp: + a: (D, + (&; (D,/(Fi - c,))’ = 0, (19) 

2( @ b )  = iSX1 f iX-’X2 a b x 3  + X 4  Q,  (20) 

where O,, Ob have been eliminated via the disturbance energy equation and where 

XI = a,[(K - c,) ((DL - a; (D,) - 3 y ( D u ] ,  

xz = a,’[(@:- a:@,)/(&’ - c,)]’ 
x3 = 4a, (D: - 4aE a, + c,a;l[O,/(e’ - c,)]’, 

with 0, = Xl (Da/(z’ - cu),  

X4 = [(9;ou-2f; a),)/(&’ -c , ) ] ’ .  

The appropriate boundary conditions for (19)-(20) are 

(Dj(0) = 0 = cD;(O) = (Dj(co) = cD;(co) (j = a, b) .  (21) 

Physically, (19) indicates that, in the zeroth-order approximation, viscous 
diffusion of vorticity is balanced by the buoyancy effect with the convection of 
vorticity being of smaller order. I n  addition, the result for 0, indicates that 
thermal diffusion is of smaller order than thermal convection. I n  (20), the terms 
i X x l  and iS-1x2 are due, respectively, to  the convection of vorticity and the 
diffusion of thermal energy; that thesc effects are of first order (i.e. O(r-3)  smaller 
than the leading-order terms), is a consequence of assuming G* = O(0-k).  

It is noted that the limiting equations, (19)-(21), are of the same form as those 
obtained by Gill & Davey (1969) in their large Prandtl number stability analysis 
of a ‘buoyancy layer’ (i.e. the one-dimensional flow arising from a doubly- 
inhitevertical plate heated to  a uniform temperature excess relative to a linearly 
stratified external temperature field), which is a much simpler primary flow in 
that its structure is independent of CT. As a result, the solution of (19)-(21) is 
qualitatively similar to that of the above paper and, therefore, will only be 
presented in condensed form, the reader being referred to  Gill & Davey for 
further details. 

Results for a, and c, versus !2 a,re shown in figure 6, the eigenvalue (a,) being 
obtained by numerical integration of (19) subject to the boundary conditions in 
(21). It is noted that c, > (e’),,,, assuring that the operator 2 is not singular. 
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Since a, is real, indicating neutral stability to this order of approximation, abmust 
be evaluated in order t o  determine the unstable rkgime. 

From (20)-(21) one obtains the requirement that 

0.2 

0.1 

where @ is a non-trivial solution of the adjoint problem 

~I”-2cl~$-”+a,4$-(~~$‘)/(~’-ca) = 0; $ ( O )  = 0 = $’(O) = $(m) = +‘(a). 

- 

- 
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FIGURE 6. Values of a, and c,; mode 11. 
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FIGURE 7. Contours of constant values of a, for mode 11; dashed and dotted contours 
are neutral stability curves a t  f3 = 100 for O(0) = 0 and O’(0) = 0, respectively. 
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I n  particular, the imaginary part of (22) results in 

C. A .  Hieber and B. Gebhart 

- (ab)i = ((+,Xl)/<@,x3)) s+ (<$,xd/<@,x3)) s-l. 123) 

Noting that ai - g-x- 10(a~)~, results based upon (23) are shown graphically in 
figure 7. 

Throughout t h e  present analysis, no consideration has been given to the 
boundary conditions on 19. Accordingly, we note that the quantity 

0, = Z,' @,/(Fa' - C , )  

vanishes a t  infinity and satisfies the boundary condition at the wall, whether i t  be 
0,(0) = 0 or @b(O)  = 0. On the other hand, the solution for 0, (implicit in (20)), 
while vanishing a t  infinity, is non-zero and has a non-zero first derivative at; the 
wall. This complication is resolved by noting that, by reducing the sixth-order 
governing equations, (1 6)-( 17 ) ,  to the fourth-order limiting equations such as 
(20), we have neglected the 'viscous coupled' integral, q53 (in the notation of (A)). 
The latter is exponentially small except for the thin region, 7 = O(C-~%),  wherein 
193/q53 = O ( d Q ) .  Hence, by adding an appropriate multiple of (q53, 8,) t o  the above 
solutions, the temperature boundary condition a t  the wall can be satisfied without 
affecting the disturbance velocity field (to the order of the above analysis). There- 
fore, the results based upon (23) are applicable to both cases: 8(0) = 0 and 
O'(0) = 0. This is corroborated in figure 7 where the neutral stability curve at  
(T = 100 has been included for these two cases. 

5. Mode I (or uncoupled mode) 
Employing the results of 5 3, we introduce the quantities: 

R g-ZG", A 3 ai"dwslU, 

and the asymptotic expansions 

N o%%(Ix, + d a b  + U-'CL, + . ..), c N d(~, + d c ,  + fl-'cC + . . .). (24) 

Restricting attention f i s t  t o  the uncoupled case, it follows that appropriate outer 
and inner expansions for the disturbance field are, respectively, 

# g . ~ ~ [ # , ( 5 ) + a - ~ ~ b ( ~ ) +  g-l#,(5)+...], (5,R andnfixed,  (T+co), (25) 

q5 N d[@, (6) + g-f@,(E) + C T - ~ @ ~ ( ~ )  + ...I, ([, R and A fixed, (T + a). (26) 

Substituting (6), (24) and (25) into the uncoupled disturbance vorticity 
equation (( 16) with the term O'/iaG" omitted), one obtains the following governing 
equation for q5,: 

Similarly, employing ( 5 ) ,  (24) and (26), the governing equation for CD, becomes 

%(q5u) = CfL - Ca) (K - rn:q5,) -fl#, = 0. 

ia, R [ ( c  - c,) (D: - 35"'@,] = @kv. 

#,(CO) = 0 = @,(O) = @b(O), 

(27) 

(28) 

These functions must satisfy the boundary conditions: 

(29) 
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together with the matching conditions: 

q5,(0) = 0 = q ( O o ) ,  @;(.o) = &(O).  (30) 

We note that the problem for q5,, consisting of equation (27) and the first 
condition in each of (29) and (30), is merely the inviscid stability problem. Since 
the profile off; (indicated in figure 2) does not contain an inflexion point, it 
follows from a well-known result in stability theory that the flow is stable, i.e. 

> 0. The actual values of (a& and (cJF are shown in figure 8. These results 
were obtained by guessing a value for a, at a given A and then integrating (27) 
along the complex 6 contour indicated in figure 8, beginning with = e-aac 

at the edge of the outer layer; a, was then iterated upon until q5, = 0 a t  6 = 0. 

FPath of integration i4 

1 2 3 4 
- i  + 6 plane 

On the basis of the first term in the expansion for a, it is seen that the uncoupled 
mode is stable for sufficiently large (T. However, since figure 4 indicates that the 
uncoupled mode is unstable a t  cr = 100, it follows that the higher-order terms in 
the expansion for OL must predominate even at  this large value of (T. It is therefore 
desirable to obtain these higher-order terms; this necessitates first determining 
@a- 
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Since $, and a, have been obtained for given A ( = a,~,), @, can be determined 
by solving (28) subject to  the last two conditions in each of (29) and (30). (It is 
noted that the term on the right-hand side of (28) is due to viscous diffusion of 
vorticity, @, in effect being a viscous correction which is required in order to  
satisfy the non-slip condition a t  the wall. That the convection and diffusion of 
vorticity are of the same order in the inner region, is a consequence of assuming 
G" = U(&).) In  particular, as c + co, e' approaches a positive constant (y,, say) 
and S$ is exponentially small; hence, 

@,(El A l c + A , + A , e - ~ ~  15+ a), (31) 

where A ,  = $h(O) and yz = [ia,R(y,-c,)]t with (y,)? > 0. Starting with (31) a t  
the edge of the inner layer, one then numerically integrates (28) into the wall, 
iterating on A ,  and A ,  until @ , ( O )  and @h(O) are zero. 

Proceeding to the second term in the outer expansion, the governing equation is 

91($b) = g 1 ( 5 )  a b g 2 ( 6 ) ,  

where 9, is the inviscid operator defined in (27) and 

(In obtainhgg,, use has been made of the relation: cb  = - abca/au.) The boundary 
conditions on $b are 

(33) $b(OO) = O ,  $b(O) = 

the second condition in (33) arising from matching requirements. 
By considering the behaviour of g1 and g, for large 6, one has from (32) that 

$b N ab( - Ce-aac) + B1e-uac, (34) 

the smaller-order terms, arising from g l ,  having been omitted in (34). S' ince we 
have fixed the arbitrary scale of the disturbance field by taking $ N d c e - a a c  as 
5 -+ co, B, is therefore zero. Hence, the procedure is to  start with (34) a t  the edge 
of the outer layer and to  numerically integrate (32) along the path indicated in 
figure 8, iterating on a b  until $ b ( 0 )  = A,. 

It is noted that although R does not appear in the governing equation for &,, 
a b  and $a are still dependent upon R via the matching condition, A,  being a 
function of R and A. Hence, the leading effect of viscosity upon the stability of 
the flow arises from the non-zero horizontal velocity component a t  the edge of the 
inner viscous layer which influences the second term in the outer region via 
matching considerations. 

Numerical results for (ab)< are presented in figure 9, the curves being for fixed 
values of R. As expected, (ab)i is negative, indicating instability. I n  particular, 
by comparing figures 8 and 9 it  is seen that, at c = 100, c r - ? i ( ~ ~ ) ~  predominates 
over ~-?i(a,)~ for almost all the values of (A, R) shown. Although this is in 
qualitative agreement with the curve in figure 4 for B = 100, i t  is clear that the 
first two terms in the expansion for 01 are inadequate at u = 100, as can be seen 
by noting that the two terms predict the flow to be unstable a t  R = 10 for the 
indicated values of A. 
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FIGURE 9. Values of ( L Z ~ ) ~  for uncoupled mode; curves correspond 
to  constant values of R. 

In order to shed some light upon the expansion for a, we proceeded to deter- 
mine the third term, Cr*a,. This necessitated obtaining the second inner, @,, 
and then the third outer, $c. Since the details are laborious but straightforward, 
we will only present the results for (a&, indicated in figure 10. 
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FIUURE 10. Values of for uncoupled mode; curves correspond 
to constant values of R. 
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It is immediately evident that the series expansion for a is, a t  best, slowly 
convergent, particularly for small values of R and A. The strongest conclusion 
which seems warranted is that, for R and A fixed, the fiow becomes stable as 
(T -+ co; clearly, this limiting behaviour is not uniform in R and A. This is sub- 
stantiated by figure 11 wherein the uncoupled neutral stability curves are shown 
a,t CT = 100,400,1600 and 6400. 

u+%G* 

FIGURE 11.  Uncoupled neutral stability curves at u = 100, 400, 1600, 6400. 

Concerning the associated coupled case (mode I), it is noted that 8 is identically 
zero in the outer region and that an appropriate expansion in the inner region is 

8 - (~%[@,(t) + (T+@b(<) + . . .] (t, R and A fixed, (T +- 00). 

As a result, the governing equation and boundary conditions on (s, are the same 
as for the uncoupled case, indicating that the results for (aa)< shown in figure 8 
also apply to  mode I. On the other hand, the governing equation for ma reduces 
to  (28) with the additional term, 

0; = (yt",' - C a ) ) ' ,  

appearing on the right-hand side. As a result, a b  for mode I differs from that of 
the uncoupled case but has the same value for either 8(0) = 0 or S'(0) = 0. Since 
the determination of ab and a, in the uncoupled case was of rather marginal 
value, we will desist from a similar determination for mode I. The point to note is 
tha,t the theory indicates that mode I is indeed associated with the uncoupled 
problem, as was surmised from the results in (A). 
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6.  Some observations 
The results of the previous sections indicate that, as g -+ 00, the vertical 

natural convection boundary layer first becomes unstable when G* = O(&), 
the instability being associated with the inner (thermal) layer of the primary 
flow. It is noted, however, that the validity of the boundary-layer approxima- 
tion is limited by the requirement tha t  the outer layer correspond to y / x  < O( 1) 
or, since C; = a-?q - yG*/xo-k, that G* > O(&). This appears to bring into 
question the self-consistency of the stability analysis for mode 11. (For example, 
at  G%*- = 11.4, corresponding to the nose of the neutral stability curve in 

C7->.G* 

FIGURE 12. Contours of constant va;lues of - +Sa,dG* ; mode 11. 

figure 7, y / x  = 1 at C; = 11*4/5 N 2.3, indicating that the neglect of x-directional 
diffusion in the outer region is untenable.) The point to be noted, however, is that 
the stability theory for mode I1 is concerned solely with the inner region of the 
primary flow, for which the boundary-layer approximation is certainly valid 
when G* = O(&). In addition, the outer region does not have a significant effect 
upon the inner, as is seen by noting that the inner-layer problem, equation (7)  
subject to the first three conditions in (9) and the first two in (lo), is completely 
self-contained. (More precisely, there is an implicit dependence upon the outer 
region which arises in considering the propriety of the condition 9l(m) = 0. 
Physically, this condition is due to the fact that the rate of change (in x) of fluid 
momentum in the outer layer is of smaller order than the viscous shear force 
associated with Faf’; hence, since the viscous diffusion in the x direction clearly 
does not increase the order of magnitude of the inertial effect in the outer region, 
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the condition Fa"(m) = 0 is valid.) We therefore conclude that the stability 
analysis in 8 4 is valid even though it corresponds to  a flow regime in which the 
outer layer of the boundary layer has not yet become fully established. 

It is important to note that, although ai for mode I1 is O(cr-A), the values of 
-$laidG* are O(1). This is indicated in figure 12 where contours of constant 
values of -t!a,dG* are shown. Combining these results with the empirical 
correlations, obtained in (A), between linear stability theory and experimentally 
determined regimes of the turbulent-transition process, it follows that, for largecr, 
we can expect the flow to first become noticeably oscillatory a t  G* E 65& and 
the mean (temporal) flow quantities to  first deviate significantly from those of 
laminar flow a t  G* z 8 2 d c .  This indicates that, for sufficiently large g, it is 
mode I1 which is solely responsible for the turbulent transition of the primary 
flow. (For example, a t  cr = 100, 8 2 d i  2: 325 whereas the critical value of G* for 
the uncoupled neutral curve is x 8200.) 

From the above two paragraphs, it follows that the vertical natural convection 
boundary layer is unstable as cr -+ 00. That is, we may expect the flow to become 
turbulent before the two-layer structure of the laminar boundary layer is fully 
developed. (For example, a t  G* = 82d6 ,  [ = 3 corresponds to  y/x z 6 . )  

As was found in (A), the cases of an isothermal and a uniform-heat-flux plate 
can be directly related to each other in terms of G* or the more familiar Grashof 
number, G. For the uniform-heat-flux case, 

Then, for example, the inner layer corresponds to  5 = O( l),  where 

[ d~ = & ( Y / ~ x )  G* N (Y/z) (CTG)~ (a -+ 00), 

a result which Kuiken (1968) found in a study of the primary flow over an iso- 
thermal plate. Similarly, all the remaining characteristic flow quantities of the 
uniform-heat-flux case can be shown t o  have the same cr and G dependence as the 
isothermal case. From this similarity, we can expect the stability properties of 
the two cases to be a t  least qualitatively equivalent. I n  particular, for either case, 
the unstable regions of modes I and I1 correspond, respectively, to G = O(cr5) and 
G = O(a)  with the associated wavelength ( A )  of the disturbances being 

A/x = O(cr-l) and A/x = O(r-3).  
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